Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Pilot Feasibility Stud ; 10(1): 65, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650042

RESUMO

BACKGROUND: Frailty, a syndrome characterized by decreased reserve and resistance to stressors across multiple physiologic systems, is highly prevalent in people living with multiple sclerosis (pwMS), independent of age or disability level. Frailty in MS is strongly associated with adverse clinical outcomes, such as falls, and may aggravate MS-related symptoms. Consequently, there is a pressing necessity to explore and evaluate strategies to reduce frailty levels in pwMS. The purpose of this pilot randomized controlled trial (RCT) will be to examine the feasibility and preliminary efficacy of a multimodal exercise training program to reduce frailty in pwMS. METHODS: A total of 24 participants will be randomly assigned to 6 weeks of multimodal exercise or to a waitlist control group with a 1:1 allocation. PwMS aged 40-65 years and living with frailty will be eligible. The multimodal exercise program will consist of cognitive-motor rehabilitation (i.e., virtual reality treadmill training) combined with progressive, evidence-based resistance training. At baseline and post-intervention, participants will complete the Evaluative Frailty Index for Physical Activity (EFIP), measures of fall risk, and quality of life. Frailty-related biomarkers will also be assessed. In addition, the feasibility of the multimodal exercise program will be systematically and multidimensionally evaluated. DISCUSSION: To date, no RCT has yet been conducted to evaluate whether targeted exercise interventions can minimize frailty in MS. The current study will provide novel data on the feasibility and preliminary efficacy of multimodal exercise training as a strategy for counteracting frailty in pwMS. TRIAL REGISTRATION: ClinicalTrials.gov, NCT06042244 (registered in September 2023).

2.
Cell Rep ; 43(2): 113738, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354087

RESUMO

Mitochondrial dysfunction is a hallmark of cellular senescence, with the loss of mitochondrial function identified as a potential causal factor contributing to senescence-associated decline in cellular functions. Our recent findings revealed that ectopic expression of the pluripotency transcription factor NANOG rejuvenates dysfunctional mitochondria of senescent cells by rewiring metabolic pathways. In this study, we report that NANOG restores the expression of key enzymes, PYCR1 and PYCR2, in the proline biosynthesis pathway. Additionally, senescent mesenchymal stem cells manifest severe mitochondrial respiratory impairment, which is alleviated through proline supplementation. Proline induces mitophagy by activating AMP-activated protein kinase α and upregulating Parkin expression, enhancing mitochondrial clearance and ultimately restoring cell metabolism. Notably, proline treatment also mitigates several aging hallmarks, including DNA damage, senescence-associated ß-galactosidase, inflammatory cytokine expressions, and impaired myogenic differentiation capacity. Overall, this study highlights the role of proline in mitophagy and its potential in reversing senescence-associated mitochondrial dysfunction and aging hallmarks.


Assuntos
Mitocôndrias , Doenças Mitocondriais , Humanos , Senescência Celular , Prolina/farmacologia
3.
FASEB J ; 38(1): e23338, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038723

RESUMO

Tristetraprolin (TTP; also known as NUP475, GOS24, or TIS11), encoded by Zfp36, is an RNA-binding protein that regulates target gene expression by promoting mRNA decay and preventing translation. Although previous studies have indicated that TTP deficiency is associated with systemic inflammation and a catabolic-like skeletal phenotype, the mechanistic underpinnings remain unclear. Here, using both TTP-deficient (TTPKO) and myeloid-specific TTPKO (cTTPKO) mice, we reveal that global absence or loss of TTP in the myeloid compartment results in a reduced bone microarchitecture, whereas gain-of-function TTP knock-in (TTPKI) mice exhibit no significant loss of bone microarchitecture. Flow cytometry analysis revealed a significant immunosuppressive immune cell phenotype with increased monocytic myeloid-derived suppressor cells (M-MDSCs) in TTPKO and cTTPKO mice, whereas no significant changes were observed in TTPKI mice. Single-cell transcriptomic analyses of bone marrow myeloid progenitor cell populations indicated a dramatic increase in early MDSC marker genes for both cTTPKO and TTPKO bone marrow populations. Consistent with these phenotypic and transcriptomic data, in vitro osteoclastogenesis analysis of bone marrow M-MDSCs from cTTPKO and TTPKO displayed enhanced osteoclast differentiation and functional capacity. Focused transcriptomic analyses of differentiated M-MDSCs showed increased osteoclast-specific transcription factors and cell fusion gene expression. Finally, functional data showed that M-MDSCs from TTP loss-of-function mice were capable of osteoclastogenesis and bone resorption in a context-dependent manner. Collectively, these findings indicate that TTP plays a central role in regulating osteoclastogenesis through multiple mechanisms, including induction of M-MDSCs that appear to regulate skeletal phenotype.


Assuntos
Células Supressoras Mieloides , Tristetraprolina , Animais , Camundongos , Osteoclastos/metabolismo , Osteogênese , Fenótipo , Tristetraprolina/genética
4.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069326

RESUMO

Cystinosis is an autosomal recessive disease resulting from mutations in ctns, which encodes for cystinosin, a proton-coupled cystine transporter that exports cystine from lysosomes. The major clinical form, infantile cystinosis, is associated with renal failure due to the malfunctioning of the renal proximal tubule (RPT). To examine the hypothesis that the malfunctioning of the cystinotic RPT arises from defective differentiation, human-induced pluripotent stem cells (hiPSCs) were generated from human dermal fibroblasts from an individual with infantile cystinosis, as well as a normal individual. The results indicate that both the cystinotic and normal hiPSCs are pluripotent and can form embryoid bodies (EBs) with the three primordial germ layers. When the normal hiPSCs were subjected to a differentiation regime that induces RPT formation, organoids containing tubules with lumens emerged that expressed distinctive RPT proteins, including villin, the Na+/H+ Exchanger (NHE) isoform 3 (NHE3), and the NHE Regulatory Factor 1 (NHERF1). The formation of tubules with lumens was less pronounced in organoids derived from cystinotic hiPSCs, although the organoids expressed villin, NHE3, and NHERF1. These observations can be attributed to an impairment in differentiation and/or by other defects which cause cystinotic RPTs to have an increased propensity to undergo apoptosis or other types of programmed cell death.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Cistinose , Células-Tronco Pluripotentes Induzidas , Humanos , Cistinose/genética , Cistina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Trocador 3 de Sódio-Hidrogênio/genética , Mutação , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Lisossomos/metabolismo
5.
J Bone Res ; 11(4)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711761

RESUMO

Background: Osteoclastic bone resorption markedly increases with aging, leading to osteoporosis characterized by weak and fragile bones. Mice exhibit greater bone resorption and poor bone mass when Sirt1 is removed from their osteoclasts. Here we investigated the ex vivo impacts of putative Sirt1 activators, Resveratrol (RSV), SRT2183, and SRT1720, on osteoclast formation and activity in primary mouse bone marrow cells (BMCs) derived from wild-type (WT) and osteoclast specific Sirt1 knockout (OC-Sirt1KO) mice and in the RAW264.7 mouse macrophage cell line. Results: We found that SRT2183 and SRT1720 inhibit the formation of osteoclasts and actin belts in BMCs and RAW264.7 cells, whereas RSV does not. We also observed that the OC-Sirt1KO mice exhibited less bone mineral density, and the BMCs harvested from these mice yielded more osteoclasts than BMCs harvested from littermate controls. Interestingly, both SRT2183 and SRT1720 reduced osteoclast and actin belt formation in BMCs from OC-Sirt1KO mice. SRT2183 and SRT1720 also significantly disrupted actin belts of mature osteoclasts generated from BMCs of WT mice, within 3 and 6 hours of administration, respectively. Furthermore, these compounds inhibited the resorption activity of mature osteoclasts, while RSV did not. Conclusion: Our findings suggest SRT2183 and SRT1720 impede bone resorption by disrupting actin belts of mature osteoclasts, inhibit actin belt formation, and inhibit osteoclastogenesis even in the absence of Sirt1. Thus, the mechanism of action of these compounds appears to extend beyond Sirt1 activation and possibly pave the way for potential new therapies in alleviating osteoporosis associated bone loss.

6.
Nat Commun ; 14(1): 886, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797255

RESUMO

We investigate the age-related metabolic changes that occur in aged and rejuvenated myoblasts using in vitro and in vivo models of aging. Metabolic and signaling experiments reveal that human senescent myoblasts and myoblasts from a mouse model of premature aging suffer from impaired glycolysis, insulin resistance, and generate Adenosine triphosphate by catabolizing methionine via a methionine adenosyl-transferase 2A-dependant mechanism, producing significant levels of ammonium that may further contribute to cellular senescence. Expression of the pluripotency factor NANOG downregulates methionine adenosyltransferase 2 A, decreases ammonium, restores insulin sensitivity, increases glucose uptake, and enhances muscle regeneration post-injury. Similarly, selective inhibition of methionine adenosyltransferase 2 A activates Akt2 signaling, repairs pyruvate kinase, restores glycolysis, and enhances regeneration, which leads to significant enhancement of muscle strength in a mouse model of premature aging. Collectively, our investigation indicates that inhibiting methionine metabolism may restore age-associated impairments with significant gain in muscle function.


Assuntos
Senilidade Prematura , Resistência à Insulina , Camundongos , Animais , Humanos , Idoso , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Metionina/metabolismo , Senilidade Prematura/metabolismo , Músculo Esquelético/metabolismo , Transdução de Sinais , Racemetionina/metabolismo
7.
Cell Rep ; 41(9): 111744, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36450260

RESUMO

Mitochondrial dysfunction, a hallmark of aging, has been associated with the onset of aging phenotypes and age-related diseases. Here, we report that impaired mitochondrial function is associated with increased glutamine catabolism in senescent human mesenchymal stem cells (MSCs) and myofibroblasts derived from patients suffering from Hutchinson-Gilford progeria syndrome. Increased glutaminase (GLS1) activity accompanied by loss of urea transporter SLC14A1 induces urea accumulation, mitochondrial dysfunction, and DNA damage. Conversely, blocking GLS1 activity restores mitochondrial function and leads to amelioration of aging hallmarks. Interestingly, GLS1 expression is regulated through the JNK pathway, as demonstrated by chemical and genetic inhibition. In agreement with our in vitro findings, tissues isolated from aged or progeria mice display increased urea accumulation and GLS1 activity, concomitant with declined mitochondrial function. Inhibition of glutaminolysis in progeria mice improves mitochondrial respiratory chain activity, suggesting that targeting glutaminolysis may be a promising strategy for restoring age-associated loss of mitochondrial function.


Assuntos
Progéria , Humanos , Camundongos , Animais , Idoso , Mitocôndrias , Células-Tronco , Membranas Mitocondriais , Envelhecimento , Agitação Psicomotora
8.
Front Immunol ; 13: 1002163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263047

RESUMO

Aging results in enhanced myelopoiesis, which is associated with an increased prevalence of myeloid leukemias and the production of myeloid-derived suppressor cells (MDSCs). Tristetraprolin (TTP) is an RNA binding protein that regulates immune-related cytokines and chemokines by destabilizing target mRNAs. As TTP expression is known to decrease with age in myeloid cells, we used TTP-deficient (TTPKO) mice to model aged mice to study TTP regulation in age-related myelopoiesis. Both TTPKO and myeloid-specific TTPKO (cTTPKO) mice had significant increases in both MDSC subpopulations M-MDSCs (CD11b+Ly6ChiLy6G-) and PMN-MDSCs (CD11b+Ly6CloLy6G+), as well as macrophages (CD11b+F4/80+) in the spleen and mesenteric lymph nodes; however, no quantitative changes in MDSCs were observed in the bone marrow. In contrast, gain-of-function TTP knock-in (TTPKI) mice had no change in MDSCs compared with control mice. Within the bone marrow, total granulocyte-monocyte progenitors (GMPs) and monocyte progenitors (MPs), direct antecedents of M-MDSCs, were significantly increased in both cTTPKO and TTPKO mice, but granulocyte progenitors (GPs) were significantly increased only in TTPKO mice. Transcriptomic analysis of the bone marrow myeloid cell populations revealed that the expression of CC chemokine receptor 2 (CCR2), which plays a key role in monocyte mobilization to inflammatory sites, was dramatically increased in both cTTPKO and TTPKO mice. Concurrently, the concentration of CC chemokine ligand 2 (CCL2), a major ligand of CCR2, was high in the serum of cTTPKO and TTPKO mice, suggesting that TTP impacts the mobilization of M-MDSCs from the bone marrow to inflammatory sites during aging via regulation of the CCR2-CCL2 axis. Collectively, these studies demonstrate a previously unrecognized role for TTP in regulating age-associated myelopoiesis through the expansion of specific myeloid progenitors and M-MDSCs and their recruitment to sites of injury, inflammation, or other pathologic perturbations.


Assuntos
Células Supressoras Mieloides , Camundongos , Animais , Células Supressoras Mieloides/metabolismo , Receptores CCR2/genética , Tristetraprolina/genética , Tristetraprolina/metabolismo , Ligantes , Quimiocinas/metabolismo , Citocinas/metabolismo , Quimiocinas CC/metabolismo
9.
Sci Adv ; 7(36): eabe5671, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516892

RESUMO

Senescence of myogenic progenitors impedes skeletal muscle regeneration. Here, we show that overexpression of the transcription factor NANOG in senescent myoblasts can overcome the effects of cellular senescence and confer a youthful phenotype to senescent cells. NANOG ameliorated primary hallmarks of cellular senescence including genomic instability, loss of proteostasis, and mitochondrial dysfunction. The rejuvenating effects of NANOG included restoration of DNA damage response via up-regulation of DNA repair proteins, recovery of heterochromatin marks via up-regulation of histones, and reactivation of autophagy and mitochondrial energetics via up-regulation of AMP-activated protein kinase (AMPK). Expression of NANOG in the skeletal muscle of a mouse model of premature aging restored the number of myogenic progenitors and induced formation of eMyHC+ myofibers. This work demonstrates the feasibility of reversing the effects of cellular senescence in vitro and in vivo, with no need for reprogramming to the pluripotent state.

10.
Periodontol 2000 ; 87(1): 268-275, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34463977

RESUMO

Periodontitis is a common chronic inflammatory disease characterized by destruction of the supporting structures of the teeth. Severe periodontitis is highly prevalent-affecting 10%-15% of adults-and carries several negative comorbidities, thus reducing quality of life. Although a clear relationship exists between severity of obesity and incidence of periodontal disease, the biologic mechanisms that support this link are incompletely understood. In this conceptual appraisal, a new "two-hit" model is presented to explain obesity-exacerbated periodontal bone loss. This proposed model recognizes a previously unappreciated aspect of myeloid-derived suppressor cell population expansion, differentiation, and activity that can participate directly in periodontal bone loss, providing new mechanistic and translational perspectives.


Assuntos
Células Supressoras Mieloides , Doenças Periodontais , Periodontite , Humanos , Obesidade/complicações , Doenças Periodontais/complicações , Periodontite/complicações , Qualidade de Vida
11.
Nutrition ; 87-88: 111189, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744645

RESUMO

OBJECTIVES: Nicotinamide adenine dinucleotide (NAD+), an essential cofactor for mitochondrial function, declines with aging, which may lead to impaired physical performance. Nicotinamide riboside (NR), a NAD+ precursor, restores cellular NAD+ levels. The aim of this study was to examine the effects of short-term NR supplementation on physical performance in middle-aged mice and the effects on mouse and human muscle stem cells. METHODS: We treated 15-mo-old male C57BL/6J mice with NR at 300 mg·kg·d-1 (NR3), 600 mg·kg·d-1 (NR6), or placebo (PLB), n = 8 per group, and assessed changes in physical performance, muscle histology, and NAD+ content after 4 wk of treatment. RESULTS: NR increased total NAD+ in muscle tissue (NR3 P = 0.01; NR6 P = 0.004, both versus PLB), enhanced treadmill endurance and open-field activity, and prevented decline in grip strength. Histologic analysis revealed NR-treated mice exhibited enlarged slow-twitch fibers (NR6 versus PLB P = 0.014; NR3 P = 0.16) and a trend toward more slow fibers (NR3 P = 0.14; NR6 P = 0.22). We next carried out experiments to characterize NR effects on mitochondrial activity and cellular energetics in vitro. We observed that NR boosted basal and maximal cellular aerobic and anaerobic respiration in both mouse and human myoblasts and human myotubes. Additionally, NR treatment improved the differentiating capacity of myoblasts and increased myotube size and fusion index upon stimulation of these progenitors to form multinucleated myotubes. CONCLUSION: These findings support a role for NR in improving cellular energetics and functional capacity in mice, which support the translation of this work into clinical settings as a strategy for improving and/or maintaining health span during aging.


Assuntos
Músculo Esquelético , Niacinamida , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Piridínio
12.
Nutrients ; 12(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007912

RESUMO

Low 25-OH serum vitamin D (VitD) is pervasive in older adults and linked to functional decline and progression of frailty. We have previously shown that chronic VitD insufficiency in "middle-aged" mice results in impaired anaerobic exercise capacity, decreased lean mass, and increased adiposity. Here, we examine if VitD insufficiency results in similar deficits and greater frailty progression in old-aged (24 to 28 months of age) mice. Similar to what we report in younger mice, older mice exhibit a rapid and sustained response in serum 25-OH VitD levels to differential supplementation, including insufficient (125 IU/kg chow), sufficient (1000 IU/kg chow), and hypersufficient (8000 IU/kg chow) groups. During the 4-month time course, mice were assessed for body composition (DEXA), physical performance, and frailty using a Fried physical phenotype-based assessment tool. The 125 IU mice exhibited worse grip strength (p = 0.002) and inverted grip hang time (p = 0.003) at endpoint and the 8000 IU mice transiently displayed greater rotarod performance after 3 months (p = 0.012), yet other aspects including treadmill performance and gait speed were unaffected. However, 125 and 1000 IU mice exhibited greater frailty compared to baseline (p = 0.001 and p = 0.038, respectively), whereas 8000 IU mice did not (p = 0.341). These data indicate targeting higher serum 25-OH vitamin D levels may attenuate frailty progression during aging.


Assuntos
Fragilidade/etiologia , Força da Mão/fisiologia , Resistência Física/fisiologia , Deficiência de Vitamina D/complicações , Envelhecimento/fisiologia , Animais , Composição Corporal , Suplementos Nutricionais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Estado Nutricional , Desempenho Físico Funcional , Vitamina D/administração & dosagem , Vitamina D/análogos & derivados , Vitamina D/sangue , Deficiência de Vitamina D/fisiopatologia
13.
Immunobiology ; 225(5): 152003, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32962822

RESUMO

Complement (C) system is a double edge sword acting as the first line of defense on the one hand and causing aggravation of disease on the other. C activation when unregulated affects different organs including muscle regeneration. However, the effect of factor H (FH), a critical regulator of the alternative C pathway in muscle remains to be studied. FH deficiency results in excessive C activation and generates proinflammatory fragments C5a and C3a as byproducts. C3a and C5a signal through their respective receptors, C5aR and C3aR. In this study, we investigated the role of FH and downstream C5a/C5aR signaling in muscle architecture and function. Using the FH knockout (fh-/-) and fh-/-/C5aR-/double knockout mice we explored the role of C, specifically the alternative C pathway in muscle dysfunction. Substantial C3 and C9 deposits occur along the walls of the fh-/- muscle fibers indicative of unrestricted C activation. Physical performance assessments of the fh-/- mice show reduced grip endurance (76 %), grip strength (14 %) and rotarod balance (36 %) compared to controls. Histological analysis revealed a shift in muscle fiber populations indicated by an increase in glycolytic MHC IIB fibers and reduction in oxidative MHC IIA fibers. Consistent with this finding, mitochondrial DNA (mtDNA) and citrate synthase (CS) expression were both reduced indicating possible reduction in mitochondrial biomass. In addition, our results showed a significant increase in TGFß expression and altered TGFß localization in this setting. The architecture of cytoskeletal proteins actin and vimentin in the fh-/- muscle was changed that could lead to contractile weakness and loss of skeletal muscle elasticity. The muscle pathology in fh-/- mice was reduced in fh-/-/C5aR-/- double knockout (DKO) mice, highlighting partial C5aR dependence. Our results for the first time demonstrate an important role of FH in physical performance and skeletal muscle health.


Assuntos
Complemento C5a/metabolismo , Fator H do Complemento/genética , Músculo Esquelético/metabolismo , Resistência Física/genética , Receptor da Anafilatoxina C5a/metabolismo , Actinas/metabolismo , Animais , Complemento C3/análise , Complemento C3/genética , Complemento C5a/análise , Fator H do Complemento/metabolismo , DNA Mitocondrial , Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fadiga Muscular/genética , Força Muscular/genética , Receptor da Anafilatoxina C5a/genética , Teste de Desempenho do Rota-Rod , Vimentina/metabolismo
14.
Mech Ageing Dev ; 180: 49-62, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30951786

RESUMO

Frailty syndrome increases the risk for disability and mortality, and is a major health concern amidst the geriatric shift in the population. High intensity interval training (HIIT), which couples bursts of vigorous activity interspersed with active recovery intervals, shows promise for the treatment of frailty. Here we compare and contrast five Fried physical phenotype and one deficit accumulation based mouse frailty assessment tools for identifying the impacts of HIIT on frailty and predicting functional capacity, underlying pathology, and survival in aged female mice. Our data reveal a 10-minute HIIT regimen administered 3-days-a-week for 8-weeks increased treadmill endurance, gait speed and maintained grip strength. One frailty tool identified a benefit of HIIT for frailty, but many were trending suggesting HIIT was beneficial for physical performance in these mice, but the 8-week timeframe may have been insufficient to induce frailty benefits. Finally, most frailty tools distinguished between surviving or non-surviving mice, whereas half correlated with functional capacity measured by nest building ability, and none correlated with underlying pathology. In summary, this study supports the ongoing development of mouse assessment tools as useful instruments for frailty research.


Assuntos
Fragilidade/patologia , Fragilidade/fisiopatologia , Fragilidade/terapia , Condicionamento Físico Animal , Animais , Feminino , Camundongos
15.
J Vis Exp ; (144)2019 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-30774134

RESUMO

High intensity interval training (HIIT) is emerging as a therapeutic approach to prevent, delay, or ameliorate frailty. In particular short session HIIT, with regimens less than or equal to 10 min is of particular interest as several human studies feature routines as short as a few minutes a couple times a week. However, there is a paucity of animal studies that model the impacts of short session HIIT. Here, we describe a methodology for an individually tailored and progressive short session HIIT regimen of 10 min given 3 days a week for aged mice using an inclined treadmill. Our methodology also includes protocols for treadmill assessment. Mice are initially acclimatized to the treadmill and then given baseline flat and uphill treadmill assessments. Exercise sessions begin with a 3 min warm-up, then three intervals of 1 min at a fast pace, followed by 1 min at an active recovery pace. Following these intervals, the mice are given a final segment that starts at the fast pace and accelerates for 1 min. The HIIT protocol is individually tailored as the speed and intensity for each mouse are determined based upon initial anaerobic assessment scores. Additionally, we detail the conditions for increasing or decreasing the intensity for individual mice depending on performance. Finally, intensity is increased for all mice every two weeks. We previously reported in this protocol enhanced physical performance in aged male mice and here show it also increases treadmill performance in aged female mice. Advantages of our protocol include low administration time (about 15 min per 6 mice, 3 days a week), strategy for individualizing for mice to better model prescribed exercise, and a modular design that allows for the addition or removal of the number and length of intervals to titrate exercise benefits.


Assuntos
Teste de Esforço/métodos , Treinamento Intervalado de Alta Intensidade/métodos , Condicionamento Físico Animal/métodos , Idoso , Animais , Humanos , Camundongos
16.
Immunobiology ; 223(12): 761-771, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30107932

RESUMO

Complement system is an important arm of the immune system that promotes inflammation. Complement Factor H (FH) is a critical regulator of the alternative complement pathway. Its absence causes pathology in different organs resulting in diseases such as age related macular degeneration and dense deposit disease. Recent studies suggest that the complement system plays a role in bone development and homeostasis. To determine the role of FH in bone architecture, we studied the FH knockout (fh-/-) mice. 3D reconstructions of femur from 16 week old fh-/- mice reveal significant changes, such as decreased BV/TV (4.5%, p < 0.02), trabecular number (22%, p < 0.01), tissue mineral density (16%, p < 0.04), and increased marrow area (16% p < 0.01), compared to their wild type (WT) counterparts. Kidney function and histology remained normal indicating that bone changes occurred prior to kidney dysfunction. Next we examined cultured osteoblasts and osteoclasts isolated from bone marrow. FH is expressed ubiquitously in the osteoblasts and in the cytoplasm of osteoclasts. The changes caused by absence of FH include: increase in number of osteoblasts (362%) and osteoclasts (342%), increase in RNA (180%) and protein expression of cathepsin K and increased osteoclast function (pit formation, 233%). Actin rearrangement in both osteoblasts and osteoclasts was altered, with a loss of integrity of the F-actin ring at the periphery of the osteoclasts. For the first time our studies demonstrate a direct role of FH in the maintenance of bone structure and function and is highlighted as a promising therapeutic target in bone diseases.


Assuntos
Osso e Ossos/imunologia , Osso e Ossos/metabolismo , Fator H do Complemento/imunologia , Actinas/metabolismo , Animais , Biomarcadores , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Imunofluorescência , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Osteoblastos/imunologia , Osteoblastos/metabolismo , Osteoclastos/imunologia , Osteoclastos/metabolismo , Fenótipo , Microtomografia por Raio-X
17.
J Neuroimmune Pharmacol ; 13(3): 396-411, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29644532

RESUMO

Methamphetamine (METH) is a drug of abuse, the acute and chronic use of which induces neurotoxic responses in the human brain, ultimately leading to neurocognitive disorders. Our goals were to understand the impact of METH on microglial mitochondrial respiration and to determine whether METH induces the activation of the mitochondrial-dependent intrinsic apoptosis pathway in microglia. We assessed the expression of pro- apoptosis genes using qPCR of RNA extracted from a human microglial cell line (HTHU). We examined the apoptosis-inducing effects of METH on microglial cells using digital holographic microscopy (DHM) to quantify real-time apoptotic volume decrease (AVD) in microglia in a noninvasive manner. METH treatment significantly increased AVD, activated Caspase 3/7, increased the gene expression levels of the pro- apoptosis proteins, APAF-1 and BAX, and decreased mitochondrial DNA content. Using immunofluorescence analysis, we found that METH increased the expression of the mitochondrial proteins cytochrome c and MCL-1, supporting the activation of mitochondrion-dependent (intrinsic) apoptosis pathway. Cellular bio-energetic flux analysis by Agilent Seahorse XF Analyzer revealed that METH treatment increased both oxidative and glycolytic respiration after 3 h, which was sustained for at least 24 h. Several events, such as oxidative stress, neuro-inflammatory responses, and mitochondrial dysfunction, may converge to mediate METH-induced apoptosis of microglia that may contribute to neurotoxicity of the CNS. Our study has important implications for therapeutic strategies aimed at preserving mitochondrial function in METH abusing patients.


Assuntos
Apoptose/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/toxicidade , Metanfetamina/toxicidade , Microglia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/patologia , Proteínas Reguladoras de Apoptose/biossíntese , Caspase 3/biossíntese , Caspase 7/biossíntese , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Mitocondrial/biossíntese , Humanos , Receptores sigma/biossíntese
18.
Immunol Invest ; 47(8): 844-854, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31282803

RESUMO

Age-related alteration of the immune system with aging, or immunosenescence, plays a major role in several age-associated conditions, including loss of bone integrity. Studies over the past several years have clearly established the immune system is chronically activated with advanced aging, termed inflammaging, and is characterized by elevated levels of proinflammatory cytokines in response to physiological or environmental cues that essentially result in an arrested immune system that maintains a low-level state of activation. This age-associated inflammation impacts several biological systems including the innate immune system, where aging results in a skewing of the hematopoiesis toward the myeloid lineage, including the expansion of myeloid-derived suppressor cells (MDSCs). This heterogeneous population of myeloid cells classically displays immunosuppressive capacity but they also have the ability to directly differentiate into osteoclasts. This review explores the possibility of inflammaging to be involved in reduction of bone microarchitecture and loss of bone mass/strength through the expansion of MDSCs and the osteoclastogenic capacity and activity.


Assuntos
Envelhecimento/imunologia , Reabsorção Óssea/imunologia , Células Supressoras Mieloides/imunologia , Animais , Desenvolvimento Ósseo , Humanos , Inflamação/imunologia , Osteoclastos/imunologia
19.
Hypertens Res ; 38(1): 48-55, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25185831

RESUMO

High blood pressure (BP) is a known risk factor for cardiovascular disease morbidity. Considering the growing evidence of nonpharmacological interventions in the management of high BP, we designed a randomized, parallel active-controlled study on the effect of yoga and standard lifestyle modification (LSM) on BP and heart rate in individuals with prehypertension (systolic BP 120-139 mm Hg and/or diastolic BP 80-89 mm Hg). Volunteers (20-60 years) of both genders without any known cardiovascular disease were randomized into either LSM group (n = 92) or LSM+yoga group (n = 92). Before the intervention, age, waist circumference, physical activity, BP and fasting plasma glucose and lipids were comparable between the groups. After 12 weeks of intervention, we observed a significant reduction in the BP and heart rate in both the groups. Further, the reduction in systolic BP was significantly more in LSM+yoga group (6 mm Hg) as compared with LSM group (4 mm Hg). In addition, 13 prehypertensives became normotensives in LSM+yoga group and four in LSM group. The results indicate efficacy of nonpharmacological intervention and the additional benefit of yoga to standard LSM. Further research in this field may add to the level of evidence on the benefit of yoga, in the reduction of BP in high BP subjects, in the scientific literature.


Assuntos
Pressão Sanguínea , Estilo de Vida , Pré-Hipertensão/terapia , Yoga , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Am J Hypertens ; 26(7): 850-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23466463

RESUMO

BACKGROUND: Hypertension, one of the modifiable risk factors for cardiovascular disease (CVD), is known to be associated with increased oxidative stress and reduced cardiovagal modulation. Similar to hypertension, prehypertension is associated with increased risk of adverse cardiovascular (CV) events. We planned this study to find the association between prehypertension, cardiovagal modulation, oxidative stress, and associated CV risk factors. METHODS: We recruited 178 subjects through hypertension screening camps conducted in Puducherry, India. Subjects were grouped into prehypertensive (n = 97) and normotensive (n = 81) groups. They were further subdivided, based on age, as young (20-39 years) and middle-aged (40-60 years) adults. We measured basal physiological parameters, heart rate variability, oxidative stress (thiobarbituric acid reactive substance and total antioxidant capacity (TAC)), and CV risk factors. RESULTS: We found significant increase in oxidative stress in prehypertensive subjects of both age groups but the cardiovagal modulation decreased significantly in young prehypertensive subjects when compared with normotensive subjects. Correlation of TAC with root mean square of the sum of successive R wave to R wave (RR) interval differences (RMSSD), a cardiovagal modulation parameter (r = 0. 437; P < 0.001), and mean arterial pressure (MAP) (r = -0.318; P < 0.001) was significant even after adjusting for CV risk factors. The correlation between MAP and RMSSD (r = 0.199; P = 0.009) was reduced after adjusting for CV risk factors. CONCLUSIONS: Prehypertension in young adults is associated with increased oxidative stress and altered cardiovagal modulation. The risk factors for CVDs in prehypertensive young adults were found to be equivalent to that of middle-aged adults who are in the twilight zone for developing CV dysfunctions.


Assuntos
Pressão Sanguínea , Sistema Cardiovascular/fisiopatologia , Estresse Oxidativo , Pré-Hipertensão/fisiopatologia , Medição de Risco/métodos , Nervo Vago/fisiopatologia , Adulto , Estudos Transversais , Feminino , Seguimentos , Humanos , Incidência , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Pré-Hipertensão/epidemiologia , Pré-Hipertensão/metabolismo , Estudos Retrospectivos , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...